Monday, December 3, 2012

Nanotubular awesomeness

Single-walled carbon nanotubes (SWCNT) are vertical hollow structures comprised of carbon atoms enjoined via industrial-strength hexagonal lattice.  Scientists at Rice University have published research  into a method of "gluing" the SWCNTs to sheets of graphene that maintain the ohmic properties of the bond.

Picture chicken wire that is stronger than steel, yet able to conduct electricity.  Comparatively, copper (Cu) and gold (Au) -- two traditionally "conductive" materials are soft and would never be able to support comparative structures of these relative heights.  Just as an ant is able to lift ~50 times their body weight, these carbon nanotube structures are able to scale to heights beyond imagination -- "up to a distance of 120 microns (0.12mm), which is really rather impressive at this scale. If we scaled it up to actual trees, they would rise into outer space," reports ExtremeTech.

This microcosm of tubular awesomeness is significant because it means that the surface area of a base can actually support much more "storage" power.    That is, supercapacitors, lithium-ion batteries, and other kinds of energy storage may  be able do do more with less. Denser energy storage structures mean longer-life batteries in a smaller space. 

No comments:

Post a Comment